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Abstract More than 80 years ago, Wolbach and Howe provided the first evidence suggesting a link between
alterationswithinhumancells that lead tomalignancies andvitaminAdeficiencies (WolbachandHowe [1925]Nutr. Rev.
36: 16–19). Since that time, epidemiological, preclinical and clinical studies have established a causative relationship
between vitamin A deficiency and cancer. Laboratory research has provided insight into the intracellular targets, various
signaling cascades and physiological effects of the biologically-active natural and synthetic derivatives of vitamin A,
known as retinoids. Collectively, this body of research supports the concept of retinoids as chemopreventive and
chemotherapeutic agents that can prevent epithelial cell tumorigenesis by directing the cells to either differentiate, growth
arrest, or undergo apoptosis, thus preventing or reversing neoplasia. Continued refinement of the retinoid signaling
pathway is essential to establishing their use as effective therapeutics for tumor subtypes whose oncogenic intracellular
signaling pathways can be blocked or reversed by treatment with retinoids. J. Cell. Biochem. 102: 886–898, 2007.
� 2007 Wiley-Liss, Inc.
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NATURAL AND SYNTHETIC RETNOIDS

Retinoids are a group of over 4000 different
natural and synthetic derivatives of vitamin A.
Vitamin A and its retinoid derivatives are
essential to the body’s important processes
such as vision, immune function, reproduction,
maintenance of epithelial tissue, and differen-
tiation [De Luca, 1991]. Consequently, vitamin
A deficiency presents many significant health
consequences such as night blindness, loss of
vision, retardation, shortening and thickening
of bones, atrophy of the testes, fetal reabsorption,
and immunodeficiency leading to increased
morbidity and mortality [Shils, 2006]. Vitamin A
itself cannot be naturally synthesized and
therefore must be ingested as a dietary pro-
vitamin such as b-carotene or as preformed

retinol or its esters. b-carotene is the major
dietary source of vitamin A and is abundant in
green-leaf vegetables, carrots, sweet potatoes
and egg yolks. Each molecule of b-carotene is
cleaved to form retinal by the enzyme 15–150

b-carotene oxygenase, located in the intestinal
epithelium. Retinal, active only in vision, is
either irreversibly oxidized to all-trans retinoic
acid by retinal dehydrogenases or reduced to
retinol, the major transport form of vitamin A,
by retinaldehyde reductases. Another major
dietary source of vitamin A is retinyl esters,
which are found in milk, red meat products, and
liver. Retinyl esters, the major storage form
of vitamin A, can be hydrolyzed into retinol in
the small intestine. Retinol is then absorbed by
the intestinal mucosa cells through passive
diffusion and complexed with cellular retinol-
binding protein II (CRBP II). Regardless of
the dietary source of vitamin A, retinol is
esterified by lecithin-retinol-acyl transferase
in the intestinal mucosa cells. Chylomicrons
deliver retinyl-ester to the liver and to a lesser
extent to tissues of the bone marrow, spleen,
adipose tissue, and the kidneys. When the body
is in need of vitamin A, retinyl esters in the liver
are hydrolyzed to retinol and transported to
needy tissues bound to retinol binding protein
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(RBP) [Harant et al., 1993; Chao et al., 1997;
Blomhoff and Blomhoff, 2006; Soprano et al.,
2006].

Synthetic retinoids are compounds that are
systematically manufactured to have similar
structure and function as natural retinoids. The
impetus for their design is to exploit the func-
tional activity of naturally occurring retinoids
while minimizing the toxicity at therapeutic
doses. The large number of synthetic retinoids is
a reflection of the many attempts made to obtain
synergism among the structural moieties for
optimal function. Synthetic retinoids can also
act as agonist or antagonist in either pan- or
selective-retinoid receptor binding. The restric-
tion of the retinoid conformation has been
shown to reduce the binding to a subset of the
receptors and hence provide a more focused
physiological effect [Willhite and Dawson,
1990]. For example, 6-naphthalenecarboxylic
acid (CD437) and Fenretinide N-[4-hydroxy-
phenylretinamide (4-HPR)] are clinically im-
portant conformationally restricted synthetic
retinoids that selectively bind RAR-g [Fanjul
et al., 1996]. While naturally occurring reti-
noids induce differentiation and growth arrest,
synthetic retinoids, such as fenretinide or
4HPR, and AHPN or CD437 inhibit cell growth
through induction of apoptosis [Sheikh et al.,
1995; Fanjul et al., 1996; Wu et al., 1998a].

RETINOID MECHANISM OF ACTION

Retinoid activity is mediated by cellular
retinol or cellular retinoic acid binding proteins
(CRBP and CRABP), which sequester the
retinoid and facilitate transport to different
enzymes involved in its metabolism [Takase
et al., 1986]. Once in the nucleus, the retinoid
signal is transduced by two families of nuclear
receptors, the retinoic acid receptor (RAR)
family and the retinoid X receptor (RXR) family.
RARs and RXRs includes three isotypes (des-
ignated a, b, and g), which are encoded by three
different genes. Each isotype consists of a
number of isoforms that are generated by the
mechanisms of alternate promoter usage or by
alternative splicing of transcripts [Giguere
et al., 1987; Kastner et al., 1995]. These
receptors, which function as ligand-activated
transcription factors, exist as RAR/RXR hetero-
dimers and to a lesser extent as RXR/RXR
homodimers [Tsai et al., 1998]. In the presence
of their natural ligands, 9-cis-RA in the case of

RXR and 9-cis-RA and ATRA in the case RAR,
the ligand-receptor complexes act as inducible
transcription factors by binding to retinoic acid
response elements (RAREs) found in the pro-
moter regions of target genes [Schrader et al.,
1993] (Fig. 1). Two types of RAREs on retinoic
acid regulated genes bind the RAR/RXR hetero-
dimer, the DR-2 type and the more common
DR-5 type [Predki et al., 1994] DR-2 and DR5
are composed of two hexameric canonical
50PuG(G/T)TCA30 repeat sequences spaced 2
and 5 bps apart, respectively [Kato et al., 1995].
In the absence of ligands, co-repressors such as
nuclear receptor corepressor (NCoR) or silenc-
ing mediator for retinoid and thyroid hormone
receptors (SMRT) associate with the RAR/RXR
heterodimer and recruit histone deacetylase
(HDAC)-containing complexes that consequent-
ly lead to the compaction of chromatin. When
an RAR ligand is available, it destabilizes the
CoR-binding interface and induces transcon-
formation that allows the interaction with co-
activators (CoAs). These CoAs can activate
the RAR/RXR dimers by recruiting histone
acetyltransferases (HATs) which lead to chro-
matin decondensation over the target gene pro-
moter region [Chen and Evans, 1995; Lavinsky
et al., 1998]. It is now well established that at
least one of the mechanisms by which retinoids
carry out their functions is by activating or
repressing specific genes via the action of the
RAR/RXR nuclear receptors. However, it is
becoming even more clear that retinoids also
act via post transcriptional mechanisms which
alter the stability of cell cycle regulatory
proteins such as Rb2/p130 and p27 (see below).

RETINOIDS AS DIFFERENTIATING AGENTS

The role of vitamin A during embryonic
development was first recognized in the 1930s
when maternal vitamin A deficiency was found
to be associated with a number of defects
[Mason, 1935; Hale, 1937]. Later, it was dem-
onstrated that an excess of vitamin A caused a
number of congenital abnormalities [Cohlan,
1935]. Following these initial observations, a
large number of studies have investigated the
role of vitamin A and more specifically RA,
RARs and RXRs in differentiation in both
the adult and the embryo. In vitro studies,
using pluripotent embyronal carcinoma (EC)
and embryonic stem (ES) cells as a model
system provide evidence of RA-induced cellular

Retinoids in Biological Control and Cancer 887



differentiation of EC and ES cells into such cell
types as, endodermal, mesodermal, neuronal,
myocardial, and fibroblast cells. Furthermore,
other studies indicate that RA is a critical
regulator of early embryonic development as
well as adult neurogenesis [Jacobs et al., 2006]
(Fig. 2). Still, more studies provide evidence
that the molecular mechanism of RA-induced
differentiation occurs by regulating a cascade of
gene expression events (Table I). The genes
whose expression is altered by RA during
differentiation include those which function
as transcription factors, RA metabolism and
transport proteins, protooncogenes, apoptosis-

related proteins and growth factors among
others. The temporal pattern of their expression
occurs in phases regardless of the pathway.
There are subsets of genes whose expression
changes very quickly, within 16 h upon RA
treatment. These genes have RAREs in their
promoters and hence respond directly to RA
binding to the RAR/RXR heterodimer. A larger
group of genes exhibit altered expression pat-
terns 1 or more days after RA treatment and
hence are indirectly regulated by RA treatment
and more restricted to a particular differentia-
tion pathway. There can also be a third phase
which involves the expression of genes repre-
sentative of the differentiated phenotype.

The genes whose expression pattern changes
early after RA treatment include RARa and
RARb whose increased expression is mediated
by RAREs located in the promoter of each gene
[Shen et al., 1991]. Studies have shown that
RARb is necessary for the RA-dependant
increase in p27 transcription, translation and
protein half-life [Li et al., 2004] and is also
required for the sustained expression of other
RA-responsive genes [Zhuang et al., 2003].
Hoxa-1 and Hoxb-1 genes, which also have
RAREs located in their 30 enhancer regions,
also increases rapidly upon RA treatment in EC

Fig. 2. One example of an RA-dependent differentiation
pathway as exhibited by P19 cells.

Fig. 1. Metabolism of vitamin A in target cells to biologically active retinoic acid. Once in the nucleus the
retinoid signal is transduced by means of gene expression by two families of nuclear receptors, the retinoic
acid receptor (RAR) and the retinoid X receptor (RXR). [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]
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and ES cells [Langston and Gudas, 1992;
Langston et al., 1997]. Hoxa-1 was shown to
regulate the expression of genes that affect cell
morphology during differentiation to neuro-
ectoderm and mesoderm and represses differ-
entiation to endoderm [Martinez-Ceballos et al.,
2005]. However, it is not known whether Hoxa-1
effects are direct or indirect. Pre-B-cell leu-
kemia transcription factors (Pbx) family of
proteins function as cofactors for the transcrip-
tional regulation of Hox proteins. PBX2 is
expressed early and PBX1 and PBX3 proteins
are expressed later. They all function to pro-
mote RA-induced endodermal and neuronal
differentiation [Knoepfler and Kamps, 1997;
Qin et al., 2004]. Cyp26 is an RA-inducible P450
cytochrome that regulates the catabolism of RA
producing hydroxylated products. Overexpres-
sion of cyp26a1, in the presence of low con-
centrations of RA, promotes rapid neuronal
differentiation [Pozzi et al., 2006]. Sox6 was
shown to promote the aggregation and neural
differentiation of p19 cells upon RA treatment.
Inhibition of Sox6 resulted in the inhibition
of neuronal differentiation and the induction
of apoptosis [Hamada-Kanazawa et al., 2004].
Furthermore Sox6 overexpression leads to an
increase in Wnt-1 protein expression. Wnt-1 was
shown to be important, although not solely suffi-
cient for RA-induced neuronal differentiation.

RETINOIDS AS CHEMOPREVENTION AGENTS

Epidemiological and animal studies have long
suggested an inverse correlation between can-
cer development and dietary consumption of
vitamin A or beta-carotene. As early as 1925,
Wolbach and Howe [1925] reported similar
epithelia keratinization and augmented growth
in tissues from vitamin A deficient rats to that
observed in neoplastic tissues obtained from
a vitamin A deficient human. In 1981, Kark

published the results of a 16-year study inves-
tigating the serum retinol levels of 174 indivi-
duals of whom half developed cancer. They
determined that the 85 patients who eventually
developed cancer had significantly lower mean
serum retinol levels than their age, race and sex
matched cancer-free counterparts [Kark et al.,
1981].

Preclinical models demonstrating the efficacy
of both natural and synthetic retinoids as
chemopreventive and chemotherapeutic agents
in the treatment of cancer was provided in 1974,
when Lasnitzki [1976] reported that the sup-
pression of experimentally induced precancer-
ous hyperplasia, parakeratosis, and metaplasia
of the mouse prostate epithelial cells with
concomitant administration of either retinol,
retinoic acid, or a synthetic analog with the
MCA carcinogen. Additionally, clinical evidence
of the chemopreventive effects of retinoids have
been reported in breast cancer [Veronesi and
Decensi, 2001], renal-cell carcinoma [Miller
et al., 2000] oral premalignant lesions [Han
et al., 1990; Lippman et al., 1993; Klaassen
and Braakhuis, 2002], bronchial epithelium of
chronic smokers [Misset et al., 1986; Pastorino
et al., 1993], skin premalignant lesions [Green-
berg et al., 1990; Tangrea et al., 1992; Moon
et al., 1997], cervical neoplasia [Meyskens et al.,
1994; Braud et al., 2002], and several other
precancer conditions [De Palo et al., 1995].

RETINOIDS AS CHEMOTHERAPEUTIC AGENTS

Retinoids and APL

Acute promyelocytic leukemia (APL) is a
subtype of acute myeloid leukemia (AML).
Patients with APL have an accumulation of
undifferentiated hematopoietic blast cells and
suffer from severe hemorrhagic events caused
by a coagulation disorder. In 1977, it was
observed that acute promyelocytic leukemia

TABLE I. Molecular Mechanism of RA-Induced Cellular Differentiation Occurs by
Regulating a Cascade of Gene Expression Events

Phase RA effect RA response Event

Retinoids-induced differentiation regulated by a cascade of gene expression events

I Direct Immediate 0–16 h Genes with RAREs in promoters (transcription regulators):
Ex. RARa, RARb, Hoxa-1, Hoxb-1, Cyp26A1

II Indirect 1–3 days Secondary responses mediating differentiation: Ex. Pbx, Sox6,
Rex-1, Wnt-1

III Indirect 3þ days Genes expressed in the differentiated phenotype: Ex. Troma,
neurofilament, laminin

The temporal pattern of their expression occurs in phases regardless of the pathway.
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patients presented a consistent t(15:17) chro-
mosomal translocation [Rowley et al., 1977].
Later, the translocation was determined to fuse
the PML growth suppressor gene, located on
chromosome 15, to the RARa gene, located on
chromosome 17q21 [Park and Fairweather,
1996]. Furthermore, the PML-RARa fusion
protein was shown to form homodimers (or
oligomers) of itself with greater affinity than
heterodimers with RXR, while still retaining
the ability to bind RA as a ligand and bind to
RAREs of target genes [Benedetti et al., 1997].
As a consequence, the homodimerized PML-
RARa has a dominant negative effect on RAR/
RXR heterodimer function by (1) reducing
the RA available to bind to RAR/RXR heter-
dimers, (2) interfering with the binding of RAR/
RXR heterodimers to the RAREs of target genes
and (3) actively repressing transcription of
target genes by binding corepressors with
enhanced affinity. The increased binding of
the corepressor mediates increased HDAC
recruitment, chromatin condensation and ulti-
mately increased repression of transcriptional
activity [Soprano et al., 2004]. However, phar-
macological doses of ATRA were shown to
completely dissociate the corepressor and asso-
ciated chromatin remodeling complex from the
PML-RARa homodimer, allowing the binding of
coactivators and transcriptional activation [Lin
et al., 2000; Soprano et al., 2004]. Early studies
suggested that treatment of APL patients with
13-cis-RA could induce APL cell differentiation
[Flynn et al., 1983]. However it was the clinical
trails of 1987 that provided evidence of retinoids
as potential chemotherapeutic agents for the
treatment of APL. Huang reported complete
remission of 24 APL patients treated with all-
trans retinoic acid. The patients additionally
suffered significantly less toxicities and side
effects with ATRA treatment than with the
previous treatment protocol. More impressive is
that of the 24 patients that obtained complete
remission, 8 were previously nonresponsive or
had developed resistance to first line therapies
[Huang et al., 1987, 1988; Sanz, 2006]. The
success of treating APL patients with ATRA
highlighted the fact that cell differentiation
therapy is a potent and practical method for the
treatment of human cancer.

Retinoids and Breast Cancer

Breast cancer is the most frequently diag-
nosed cancer among American women, however

mortality has decreased significantly as a result
of improved treatment and early diagnosis. Low
intake of b-carotene has been shown to increase
the risk of breast cancer [Hislop et al., 1990;
Moon, 1994; Rohan et al., 1998]. Several studies
have established an inhibitory role of retinoids
in breast cancer in experimental animal models
[Moon and Mehta, 1990; Moon et al., 1992;
Veronesi and Costa, 1992; Costa, 1993; Moon,
1994]. For example, Moon et al. [1976] reported
a 52% reduction in the incidence of mammary
cancer in rats treated with retinyl acetate.
However, of all of the retinoids evaluated for
efficacy against chemically-induced mammary
cancer, retinyl acetate and fenretinide (4-HPR)
appear to be the most efficacious. However, in
contrast to retinyl acetate which accumulates in
the liver, causing significant hepatotoxicity
[Moon et al., 1979], 4-HPR accumulates in the
mammary gland in a dose-related manner
[Hultin et al., 1986; Costa et al., 1995].

In vitro studies indicate that retinoids inhibit
the growth of estrogen receptor (ER)-positive
but not ER-negative human breast cancer cells
[Fontana et al., 1987; Koga and Sutherland,
1991]. These ER-negative cells were demon-
strated to express significantly lower RAR-b
levels compared to their ER-positive matched
cells [Roman et al., 1992; van der Burg et al.,
1993; Sheikh et al., 1993b]. In addition, ER-
negative cells transfected with RAR-b exhibited
retinoid-induced growth inhibition [Sheikh
et al., 1994; van der Leede et al., 1995].
Furthermore, protein expression analysis of
human breast cancer cell lines revealed either
a consistent loss or down-regulation of RAR-b
mRNA expression. Exogenous overexpression
of RAR-b in these breast cancer cell lines led to
RA-induced growth arrest and apoptosis [See-
waldt et al., 1995; Liu et al., 1996]. The growth of
ER-positive RA breast cancer cells were shown
to be inhibited by treatment with 9-cis-RA by
blocking entry into S phase [Zhao et al., 1995].
Since 9-cis RA serves as a ligand for both RAR
and RXR, it was further revealed that the
mechanism responsible for the retinoid sensi-
tivity of breast cancer cells does not involve
transcriptional modulation of the RXRs but
instead involves signaling through RAR [Zhao
et al., 1995].

The downstream signaling events that lead to
retinoid-induced breast cancer cell growth
arrest is thought to occur at least in part
through AP-1 antagonism [Fanjul et al., 1994].
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A class of retinoids, which include SR11328 and
SR11302, selectively inhibits AP-1 activity but
does not activate transcription, has been shown
to effectively inhibit the proliferation of several
breast cancer cell lines [Fanjul et al., 1994].
However, anti-AP-1 activity may not be the only
mechanism involved in growth inhibition. p53,
an important tumor suppression gene, has been
found upregulated in MCF-7 breast cancer cells
by 9-cis RA [James et al., 1995]. Furthermore, a
novel synthetic retinoid 6-[3-(1-adamantyl)-4-
hydroxyphenyl]-2-naphthalene carboxylic acid
(AHPN) could directly induce p21WAF1/CIP1
and cause apoptosis of breast cancer MCF-7
cells and MDA-MB-231 cells independent of p53
[Shao et al., 1995]. Also, one study showed that
RA-induced growth arrest in MDA231-RAR-b
transduced cells was associated with c-myc
mRNA down-regulation [Seewaldt et al.,
1995]. In addition to the effects on the expres-
sion of these cell growth associated genes,
retinoids also block growth stimulation by IGF-
I. For example, RA inhibition of cell prolifera-
tion may occur through induction of IGF bind-
ing proteins (IGFBP-1,2,3), which could bind
IGF-I and inhibit the IGF-I-mediated mitogenic
signal transduction pathway [Fontana et al.,
1991; Adamo et al., 1992; Sheikh et al., 1993a;
Chen et al., 1994]. In clinical trials, 4-HPR was
found to decrease plasma IGF-I levels in early
breast cancer patients [Torrisi et al., 1993]. All
of these facts indicate that retinoids can serve as
potential chemotherapeutic agents in the treat-
ment of breast cancer. There is evidence in
breast cancer models that IRS-1 is the main
adaptor molecule activated by IGF-1R and plays
a role in cell proliferation. IRS-2 on the other
hand is thought to regulate cell motility and
plays a role in metastasis [Dearth et al., 2007;
Gibson et al., 2007]. A number of studies have
demonstrated that retinoids inhibit breast
cancer cell growth through interference in the
IGF-1R signaling pathway. Inhibition of IGF-I
stimulated, increased production of IGF bind-
ing protein 3 and recently, downregulation of
Akt pathway due to degradation of IRS-1 [del
Rincon et al., 2003, 2004] are some of the
mechanisms by which retinoids inhibit growth
of breast cancer cells.

In clinical studies, synergism has been
reported when retinoids have been combined
with other growth inhibitory agents, such as
estrogen antagonists [Fontana et al., 1987;
Koga and Sutherland, 1991], interferon a and

b [Fanjul et al., 1996; Marth et al., 1986, 1987,
1993; Moore et al., 1994], and vitamin D deri-
vatives [James et al., 1995; Saunders et al.,
1995].

Retinoids and Ovarian Cancer

Ovarian cancer is the sixth most frequent
cancer in women worldwide [Parkin et al., 2005].
It is the second most commonly diagnosed gyne-
cologic cancer in women worldwide, the dead-
liest gynecologic malignancy, and the fourth
leading cause of cancer-related deaths in women
in the USA [McGuire et al., 2002a,b; Jemal
et al., 2005]. Nulliparity, never having given
birth, is one of the few recognized risk factors for
ovarian cancer, with nulliparous women having
a two- to threefold increased risk when com-
pared to their parous counterparts.

Attempts to arrest ovarian cancer cell growth
have included a variety of chemotherapies,
including alkylating and platinum compounds,
the most common of which is a regimen of
Paclitaxel plus Cisplatin. Unfortunately, pati-
ents ultimately become resistant to this therapy
and only 20–30% of patients live to 5 years
[Zhang et al., 2000]. Retinoids represent a group
of molecules that show promise as a chemo-
therapeutic agent. ATRA has been shown to
inhibit ovarian tumor cell growth through
multiple pathways: (1) repression of AP-1
activity [Soprano and Soprano, 2003], (2) induc-
tion of suppressor growth factors such as TGF-
beta, (3) alteration of the G1-specific cell
regulatory gene expression [Zhang et al., 2001].

The mechanism of RA-induced growth arrest
of ovarian tumor cells has been well studied in
our laboratory. ATRA has been shown to arrest
the growth of ovarian carcinoma cells in G0/G1
and to elicit the elevation of Rb2/p130, PP2A,
and p27 proteins levels [Wu et al., 1997; Vuocolo
et al., 2003, 2004; Zhang et al., 2001; Soprano
et al., 2006] (Fig. 3). The critical role of both
retinoid nuclear receptor (RAR) and retinoid-X-
receptors (RXR-a) in mediating RA inhibitory
functions has been demonstrated previously
using anti-sense and dominant-negative appro-
aches to reduce the expression and function of
retinoid receptors [Wu et al., 1998b]. Likewise,
overexpression of RARs and RXR-a nuclear
receptors in the RA-resistant ovarian tumor
cell line, SKOV3, was shown to partially restore
growth arrest upon RA treatment [Wu et al.,
1998b]. However, failure to revert completely
to the wildtype phenotype suggests that the
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mechanism of RA-resistance in SKOV3 cells is
not simply low RA nuclear receptor levels.

Further in vitro studies indicate that ATRA-
induced growth arrest requires the function of
such cell cycle proteins as Rb2/p130, p27, PP2A,
cyclins, Cdks and the E2F family of trans-
cription factors. Rb2/p130 is a member of the
highly homologous retinoblastoma (Rb) family
of tumor suppressors [Paggi et al., 1996; Mayol
and Grana, 1997]. It is currently known that
this family of proteins functions by binding and
sequestering members of the E2F family of
transcription factors that, when active, promote
the expression of genes required for cell cycle
progression [Moberg et al., 1996; Mayol and
Grana, 1997; Ferreira et al., 1998]. The activity
and stability of the Rb2/p130 tumor suppressor
is regulated through phosphorylation, which is
modulated by p27, PP2A, GSK3, cyclin A/CDK2,
cyclin D/CDK4 and cyclin D/CDK6 complexes.
The hypophosphorylated form has been shown
to selectively bind to E2Fs thus mediating
growth arrest and the most hyperposphorylated
form has been shown to be targeted by ubiquitin
for degradation [Ludlow et al., 1993; Mayol and
Grana, 1997, 1998; Smith et al., 1998; Hansen
et al., 2001; Tedesco et al., 2002; Vuocolo et al.,
2003, 2004; Litovchick et al., 2004]. Following
ATRA treatment, PP2A—a serine/threonine
phosphatase, binds at the nuclear localization
signals in the carboxy terminus of Rb2/p130 and
catalyzes its dephosphorylation and increase of
the half-life of Rb2/p130 in the cell [Purev
et al., 2006]. These NLS sites have also been
shown to be important for the binding to

importin alpha and the targeting of Rb2/p130
to the nucleus [Purev et al., 2006]. Thus in the
ATRA-treated ovarian carcinoma cells, PP2A
binds to the Rb2/p130 and dephosphorylates the
NLS of Rb2/p130 leading to the interaction of
importin a with Rb2/p130. Importin b then
binds to the importin a-Rb2/p130 complex,
leading to the translocation of the Rb2/p130 to
the nucleus where it acts to arrest ovarian
cancer cells in G1 and suppress proliferation.

Retinoids and Apoptosis

Apoptosis, also known as programmed cell
death, is important for maintaining normal
tissue and cell physiology in multicellular orga-
nisms. Apoptosis is essential for the develop-
ment and maintenance of cellular homeostasis.
It can be induced from stimuli originating from
outside the cell via the extrinsic pathway or by
stimuli originating from inside the cell via the
intrinsic pathway. For the extrinsic pathway,
apoptosis is initiated by cell membrane mole-
cules, such as Fas and TNFR (tumor necrosis
factor receptor). For the intrinsic pathway,
apoptosis is initiated by an internal signal
within cells, usually the mitochondria. Dys-
function of the apoptosis pathway can lead to
the development of tumors. Many cancer thera-
peutic agents, including synthetic retinoids
such as 4-HPR and CD437 exert their effect by
inducing apoptosis (Fig. 4).

CD437 has been demonstrated to inhibit the
growth of both ATRA-sensitive (CA-OV3) and
ATRA-resistant (SK-OV3) ovarian tumor cell
lines as well as to induce apoptosis [Wu et al.,

Fig. 3. Retinoic acid-induced growth arrest of ovarian carcinoma cells in G0/G1 requires the function of
such cell cycle proteins as p27, PP2A, Rb2/p130, E2F family of transcription factors and CDKs. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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1998b; Holmes et al., 2000]. Since it is well
established that RARs mediate retinoid signal-
ing that ultimately leads to growth arrest, it is
logical to ask whether the nuclear receptors also
mediate the retinoid signaling pathway that
results in apoptosis. To address this, RAR
protein levels and function was modulated by
overexpressing either wild type RARg or a pan
dominant negative mutant of all RAR subtypes
called RAR-b (R269Q) [Tairis et al., 1995],
or with treatment of an RAR-g antagonist,
MM11253. Inhibition of RAR function reduced
but did not eliminate induction of apoptosis in
both CA-OV3 and SK-OV3 cells by CD437.
Furthermore, overexpression of wild type RARg
increased apoptosis after treatment with CD437.
These data suggest that CD437 induces apop-
tosis via both RAR dependent and RAR inde-
pendent pathways. In contrast, 4-HPR induces
apoptosis via only an RAR independent path-
way [Holmes et al., 2000].

Caspase activity is a hallmark of the induc-
tion of apoptosis. In response to CD437 and 4-
HPR treatment caspase-3 activity is induced in
both the CA-OV-3 and the SK-OV-3 ovarian
carcinoma cell lines. Using caspase-3 inhibitors,
caspase-3 activation was shown to be essential
for the induction of apoptosis by both CD437 and
4-HPR [Holmes et al., 2002, 2003]. In contrast,
caspase-8 activity was not necessary for the

induction of apoptosis by either CD437 or 4-
HPR because no appreciable caspase-8 activity
was detected and caspase-8 inhibitors did not
block induction of apoptosis by these retinoids.
However, caspase-9, which functions as an
activator of caspase-3, was shown to be induced
following both CD437 and 4-HPR treatment and
was required for activation of caspase-3 and
induction of apoptosis. Mitochondrial mem-
brane depolarization was also shown to be
necessary for the activation of apoptosis by
CD437 and 4-HPR. Using two chemical
reagents, Bongkreikic and Betulinic acid, which
inhibit the depolarization of mitochondrial
membranes and induces the depolarization of
mitochondrial membranes respectively through
the activation of caspase-9 and caspase-3,
apoptosis was abrogated and reinstated
[Holmes et al., 2002, 2003]. In response to the
depolarization of the mitochondrial membrane,
pro-apoptotic proteins such as cytochrome c,
procaspase-9, and APAF-1 are released. These
proteins can then associate and cleave procas-
pase-9 to the active caspase-9. Active caspase-9
then cleaves procaspase-3 to active caspase-3.
Thus the order of events in the late stages of
apoptosis induction by CD437 and 4-HPR are
similar: mitochondrial depolarization, caspase-
9 activation, subsequent activation of capase-3.
The induction of apoptosis by CD437 and 4-HPR

Fig. 4. A model of CD437- and 4HPR-induced apoptosis in ovarian carcinoma cells. CD437 induces
apoptosis via RAR-dependent or MAP kinase-dependant pathway. Both CD437 and 4HPR requires the
depolarization of themitochondria and the release of apoptotic proteins such as cytochrome c and caspases.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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however, utilizes separate early molecular
pathways that converge at the depolarization
of the mitochondrial membrane.

SUMMARY, CONCLUSIONS,
AND FUTURE DIRECTIONS

The mechanisms by which ATRA causes
growth inhibition of ovarian carcinoma cells
are complex. Our lab has identified several
distinct mechanisms to date, which bring to
light the multifunctional activities of ATRA. We
have identified changes in expression of pro-
teins such as Rb2/p130, p27, and PP2A. These
proteins are upregulated in response to ATRA
treatment and cause a response via their
normal activities, which are to slow cell growth
through several post-transcriptional mecha-
nisms summarized earlier. Our studies are the
first to show that ATRA treatment lends to the
binding of PP2A to the Rb2/p130 protein, which
renders Rb2/p130 non-susceptible to ubiquiti-
nation dependent proteosomal degradation.
Moreover, interaction of PP2A with Rb2/p130
C-terminus also plays an important role in
translocating Rb2/p130 to the nucleus by medi-
ating interaction of the Rb2/p130 with the
nuclear transport proteins importin a and
importin b. Once in the nucleus, Rb2/p130 acts
to inhibit the transcription of E2F-regulated
genes required for G1 progression and entry
into S phase.

Understanding the molecular mechanism of
ATRA-mediated growth arrest and/or apoptosis
will allow us to design more effective therapy for
a variety of human cancers including ovarian
cancer. For example, based on our findings,
assays for Rb2/p130 and p27 protein level,
Rb2/p130 phosphorylation status, mutations
in Rb2/p130 NLS sequences, PP2A activity
and presence of Rb2/p130 in the nucleus could
provide invaluable prognostic tools to evaluate
the efficacy of ATRA treatment for late
stage ovarian cancer. Likewise, modulation of
these proteins through gene therapy could be
used to increase sensitivity of drug resistant
ovarian tumor cells to retinoid treatment.

Little is known about the mechanism of
retinoid resistance. Preliminary studies from
our lab suggest that one mechanism that
contributes to ATRA resistance involves the
sequestration of the Rb2/p130 tumor suppres-
sor protein in sub-nuclear bodies or as aggre-
gates. When the levels of these proteins or their

interacting proteins are modified in vitro,
ATRA-sensitivity is restored and growth arrest
occurs. Since innate and acquired resistance to
ATRA and other retinoids limits their useful-
ness as chemotherapeutic agents, high through-
put screening can (1) assist in determining the
suitability of the patient for ATRA treatment
based on the protein profile of the tumor and (2)
modulation of those proteins that confer reti-
noid resistance can potentially make a tumor
sensitive to retinoid treatment. Therefore con-
tinued refinement of the retinoid signaling
pathway and understanding the mechanisms
that govern retinoid resistance will be essential
to future employment of retinoids as effective
anti-cancer therapeutics.
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